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In order to obtain sum rules and spectral representations the Hermiticity property
〈9, A8〉 = 〈A9,8〉 of observables is used. It is shown that for certain9 and8 the
property turns out to be inconsistent with the commutation relations that containA. The
known Schwinger paradox is explained by this inconsistency.
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1. INTRODUCTION

Quantum observableA must satisfy the equation

〈9, A8〉 = 〈A9,8〉. (1)

Note that this Hermiticity property (HP) is necessary but not sufficient forA to
be an observable possessing a complete set of eigenvectors with real eigenvalues,
see Richtmyer (1978). Equation (1) must hold for vectors9, 8 belonging to
Hilbert spaceH (more exactly belonging toA domain (Richtmyer, 1978)). In fact
Eq. (1) is also valid when9, 8 are A eigenvectors that may not belong toH. In
practice physicists use Eq. (1) for any9 and8 they come across. For example, let
us mention the derivations of spectral representations (Schweber, 1961) and sum
rules (Lipkin, 1973). In other words, Eq. (1) is assumed (usually tacitly) to be a
working tool that allows one to perform calculations.

Therefore, it seems urgent to give examples of9 and8 for which Eq. (1)
turns out to be invalid. This is done in Section 2.

In Section 3, the known Schwinger paradox is considered in detail in order
to show that its derivation assumes the validity of a particular HP. This makes it
possible to suggest the resolution of the paradox: this assumption must be rejected.
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The so-called Schwinger term and sum rules are dicussed in Sections 4 and 5.
For conclusion see Section 6.

2. COMMUTATION RELATIONS VERSUS HERMITICITY

Let us show that for some9 and8, Eq. (1) turns out to be invalid.
Along with A consider an operatorB such that [A, B] = C 6= 0 (note thatA

is multiple of the unit operator if [A, B] = 0 for all B). Letϕa be A eigenvectors

Aϕa = aϕa, a are real. (2)

Consider the averages of [A, B] − C in the stateϕa. We have

〈ϕa, ABϕa〉 = 〈ϕa, B Aϕa〉 + Caa

= 〈aϕa, Bϕa〉 + Caa = 〈Aϕa, Bϕa〉 + Caa. (3)

Equation (2) was used;Caa denotes〈ϕa, Cϕa〉. The consequence of Eq. (3) is that
Eq. (1) is invalid for9 = ϕa,8 = Bϕa whenCaa 6= 0 and must be replaced by

〈ϕa, A8〉 − 〈Aϕa,8〉 = Caa, 8 ≡ Bϕa. (4)

Conversely, if Eq. (1) is postulated to be valid unconditionally, then〈ϕa, [A, B]ϕa〉
must vanish in contradiction to [A, B] 6= 0 (Caa being nonzero). Assuming that
both Eq. (1) and commutation relations (CR) are valid we get paradoxes that mean
that Eq. (1) and CR are inconsistent.

Example. Let A be a momentum operatorP = −id/dx andB be a functiong(x)
of the position operatorx, so that [P, g(x)] = −ig′(x). Then Eq. (3) turns into

〈ϕp, Pgϕp〉 − 〈Pϕp, gϕp〉 = 〈ϕp, (−i )g′ϕp〉
= (−i )[g(∞)− g(−∞)]. (5)

Hereϕp = exp(i px). The r.h.s. of Eq. (5), does not depend onp, is not zero and is
finite if, e.g.,g(x) = tanhx. So Eq. (1) in the caseA = P,9 = ϕp, and8 = gϕp

is not consistent with [P, x] = −i .

It will be shown in the next section that analogous inconsistency of HP and
CR explains (resolves) Schwinger’s paradox.

3. SCHWINGER’S PARADOX

Let us consider a spinor fieldψ that is free or interacts with other fields. Usual
canonical CR are assumed for Schr¨odinger operatorsψµ(Ex) andψ+µ (Ex) (see, e.g.,
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Bjorken and Drell, 1965)

{ψµ(Ex), ψ+ν (Ey)}+ = δµνδ(Ex − Ey). (6)

Hereµ, ν = 1, 2, 3, 4;ψ+ν denotes Hermitian conjugated toψν . Zero anticommu-
tators are not written out.

3.1.Let us calculate the double commutator [j 0(Ex), [H, j 0(Ey)]] where H is
the total Hamiltonian and

j 0(Ex) =
∑
µ

ψ+µ (Ex)ψµ(Ex) ≡ ψ†(Ex)ψ(Ex)

(the column ofψν is denoted byψ and the row ofψ+ν byψ†). Zero commutators
follow from Eq. (6) for Dirac charge and current densities

[ j 0(Ex), j 0(Ey)] = 0 (7)

[ j 0(Ex), j k(Ey)] = 0, j k(Ex) ≡ ψ†(Ex)αkψ(Ex). (8)

Suppose that the interaction terms inH depend only on bilinear combinations of
the spinor fields, namely such asj 0, j k, ψ†βψ, ψ†βγ5ψ (without derivatives of
ψ). Then it follows from Eq. (6) (in particular from Eqs. (7) and (8)) that [j 0(Ex), H ]
is equal to [j 0(Ex), H0s], H0s being the free spinor Hamiltonian

H0s =
∫

d3xψ†(Ex)(−iαk∇k + βm)ψ(Ex), (9)

see Bjorken and Drell (1965, chap. 13, Eq. (13.46)). Using Eq. (6) one gets

[ j 0(Ex), H ] = −i
∑

k

∇k j k(Ex). (10)

Equation (10) also follows from∂t j 0+ divEj = 0 and [j 0, H ] = i ∂t j 0. Because of
Eq. (8) the double commutator [j 0(Ex), [H, j 0(Ey)]] equals zero. In particular, we
have

[F, [H, F ]] = 0, F =
∫

d3x f (Ex) j 0(Ex). (11)

Stating the Schwinger paradox Itzykson and Zuber (1980, Vol. 2, chap. 11.3)
assumedf (Ex) = δ(Ex) so thatF = j 0(0).

In particular Eq. (11) leads to

D ≡ 〈Ä, [F, [H, F ]]Ä〉 = 0, (12)

whereÄ is the physical vacuum state. Let us assume thatHÄ = 0.
3.2. Schwinger (1959) calculatedD in a different way, which results in a

nonzero value forD in paradoxical contradiction to Eq. (12). The way begins as
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follows:

D = 〈Ä, [F, [H, F ]]Ä〉 = 〈Ä, (FHF− FFH− HFF+ FHF)Ä〉
= −〈Ä, HF2Ä〉 + 2〈Ä, FHFÄ〉. (13)

Only the equationHÄ = 0 has been used. The positiveness of the second term in
the r.h.s. of Eq. (13) will be argued in the next subsection. Schwinger (1959) as well
as Itzykson and Zuber (1980, Vol. 2, chap. 11.3) tacitly assumed that the first term
in the r.h.s. of Eq. (13) vanishes because of Eq. (1) forA = H,9 = Ä,8 = F2Ä

andHÄ = 0. So in this way one obtainsD > 0 instead ofD = 0.
To resolve the paradox the Eqs. (7) and (8) are usually stated to be false (the

term “naive” is used). I suggest another resolution. Equation (6) is postulated, so
Eqs. (7) and (8) are valid and the r.h.s. of Eq. (13) must vanish. This means that
〈Ä, H F2Ä〉must be equal to 2〈Ä, FHFÄ〉 > 0 (and not to zero). In other words,
the paradox shows that Eq. (1) is false forA = H ,9 = Ä,8 = F2Ä.

3.3.Now turn to the derivation of the inequality〈Ä, FHFÄ〉 > 0. This needs
some assumptions. At first, the validity of the spectral resolutionH =∑n |n〉En〈n|
is assumed,|n〉 beingH eigenvectors,En ≥ 0. Further Eq. (1) in the form

〈Ä, Fn〉 = 〈FÄ, n〉 = 〈n, FÄ〉∗ (14)

is used. The result is strictly positive

〈Ä, FHFÄ〉 =
∑

n

En|〈n|F |Ä〉|2 (15)

if 〈n, FÄ〉 6= 0 for some|n〉 6= Ä.
In the case of the free spinor field one may prove the inequality 2〈Ä, FHF〉 >

0 using canonical anticommutators for fermion creation–destruction operators (the
anticommutators being tantamount to Eq. (6)). One obtains that〈Ä, FHFÄ〉 di-
verges, i.e., in this case the paradox assumes the extreme form “0 equals∞.”

4. REGULARIZATION AND SCHWINGER TERMS

To regularize〈Ä, FHFÄ〉 Schwinger (1959) proposed to replacej 0(Ex) =
ψ†(Ex)ψ(Ex) by

j 0
r (Ex) = ψ†(Ex − Eε)ψ(Ex + Eε)

(the subsequent symmetrical averaging over allEε directions being implied). It
follows from Eq. (6) that the commutators [j 0

r (Ex), j 0
r (Ey) and [j 0

r (Ex, j k
r (Ey))] are

nonzero and, therefore, [Fr , [H, Fr ]] 6= 0. Schwinger did not verify the equality

〈Ä, [Fr , [H, Fr ]]Ä〉 = 2〈Ä, Fr HFrÄ〉.
Meanwhile if the equality does not hold, the paradox still exists though it does not
have a simple form “zero equals nonzero.” Schwinger’s purpose was to demonstrate
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that 〈Ä, [ j 0
r (Ex), j k

r (Ey)]Ä contains a nonvanishing contribution proportional to
∇kδ(Ex − Ey). It is called Schwinger’s term and has been discussed in Itzykson
and Zuber (1980, Vol. 2, chap. 11.3) and Weinberg (2000). Weinberg noted that
dimensional regularization does not lead to the Schwinger term. Then Schwinger’s
paradox survives under regularization.

Let us mention a modification of Schwinger’s paradox. There exists a way
of calculating the average〈Ä, [ j 0(Ex), j k(Ey)]Ä〉 that gives to it a nonzero value
(proportional to∇kδ(Ex − Ey) in contradiction to Eq. (8). See, e.g., Brown (1966,
Appendix A) and Itzykson and Zuber (1980, Vol. 1, chap. 5.1.7) (in the latter ref-
erence see Eq. (5.98) that follows from Eqs. (5.91) and (5.89), or from Eq. (5.81)).
The modification looks simpler than Schwinger’s version. However, its derivation
uses among others the assumptions of the kind represented by Eq. (14) needed to
obtain absolute squares of matrix elements, cf. Eq. (15).

5. “SUM RULES” AND SCHWINGER PARADOX

To illustrate the relation between “sum rules” and Schwinger’s paradox I con-
sider a simple case of nonrelativistic quantum mechanics when the Hamiltonian
is equal top2/2m+ V(x). Similarly to Section 3 an average of the double com-
mutator [F, [H, F ]] is calculated in two ways,F being now some function ofx.
The first way uses only the canonical CR [p, x] = −i and gives

〈Ä, [F, [H, F ]]Ä〉 = 〈Ä, (F ′(x))2Ä〉/m.

The second way is carried out analogously to Subsection 3.2 and assumes the
validity of Eq. (1) in the form

〈Ä, HF2Ä〉 = 〈HÄ, F2Ä〉. (16)

Here and belowÄ denotesH eigenvector with eigenvalueE0.
“Sum rules” are obtained when we equate the results of these ways of calcu-

lation, e.g., see Lipkin (1973),〈
Ä,

1

m

(
dF

dx

)2

Ä

〉
= 2

∑
2

(En − E0)|〈n|F |Ä〉|2. (17)

For possible physical applications of “sum rules” see Lipkin (1973). However, it
should be stressed that their theoretical validity depends on the validity of Eq. (16).
We may use “sum rules” for verification of Eq. (16). For this purpose one must
calculate directly the sum in the r.h.s. of Eq. (17) and compare the r.h.s. with the
l.h.s. Their inequality will mean that we have a paradox that shows that Eq. (16)
is inconsistent with [p, x] = −i . Schwinger’s paradox may be considered as an
example of “sum rules” that is obviously violated.
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6. CONCLUSION

It was shown that the HP, see Eq. (1), for someA, 9, 8 may turn out to be
inconsistent with CR.

The usual way of the Schwinger paradox resolution is to doubt canonical CR,
HP being tacitly assumed. I suggest another resolution: CR must be considered
as fundamental fixed postulates that are necessary for quantum calculations. To
resolve the paradox, one must accept that HP is invalid for someA,9,8.

It was stressed in Section 5 that “sum rules” derivation uses HP as in the case of
Schwinger’s paradox. Therefore, the rules may be invalid as theoretical statements.
Their derivation should be complemented by the proof of the corresponding HP.
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